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Contracting on Average Random IFS
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We consider random iterated function systems which consist of strictly increasing and
(not necessarily strictly) convex functions on a compact interval or on a half line. We
assume that the system is contracting on average in a sense which is wide enough to
permit the existence of a common fixpoint at which some functions of the system are
expanding and perhaps none of them are contracting (see Fig. 1). We prove that the
Hausdorff dimension of any of the possibly uncountably many invariant measures is
smaller than or equal to the accumulated entropy divided by the Liapunov exponent.
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1. INTRODUCTION

Our aim in this paper is to prove that the Hausdorff dimension is less than or
equal to the entropy/Liapunov exponent for all the (usually uncountably many)
measures which are invariant w.r.t. a random iterated function system RIFS (F, p)
on I, where I = [0, b] is a compact interval or a half line (b = 00), and F =
(fi, ..., fin) is a set of m strictly increasing, convex C> mappings defined on /
whose derivatives are bounded away from zero. Further, p = (p1, ..., pw) is a
probability vector which gives us the probability with which we apply f;. Let  be
the {p1, ..., pm}N Bernoulli measure on the symbolic space ¥ := {1, ..., m}N.
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Fig. 1. Repelling common fixpoint at x = 1.

We assume that (F,p) is of similar flavor to the one on Fig. 1
(see 2.1-2.4 for the precise definition). Furthermore, we make the following
assumption.

1.1. Principal Assumption

In the rest of the paper we always assume that (F, p) is contracting on average
in the sense that the Liapunov exponent

w=/mﬁmmwm>

T
= /E(log fi(x)dv(x) = / Zpi log f/(x)dv(x) < 0, (1.1)
i=1

where
Vi= H*M?
is the push down measure of w and IT : {1, ..., m}N — I defined by

(i, i2,...)= lim f; o---0 f; (0)
n—00
is the natural projection. Notice that {f;, o---o f; (0)} _ is an increasing se-
quence. Therefore I1(iy, iy, . ..) always exists. If b = oo then it can happen that
I1(i) = oc. In this case in (1.1) we mean f;(T1(i)) := lim f/(x) (which exists
X—>00

since f is increasing). However, (1.1) implies that for p almost all i = (i1, iz, .. .)
we have I1(i) < oo even if b = oo. (See Fact 0.)
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It was assumed in related results previously known (see [9]) that

E(supy log f7(x)) < 0 (1.2)

which is a much stronger assumption (which definitely does not apply in a case
where we have a common repelling fixpoint).

We introduce the above notion of contracting on average which is different
from the one most commonly used (see [2] and below) in the literature for the
following reasons:

(1) RIFS with common repelling fix points are not contracting on average in
the most commonly used sense,

(2) We cannot possibly have the best upper bound on dimensions of the form
entropy/Liapunov exponent if the exponent is defined like in [2] or in [9]
(see (1.3)) and if not all the maps are linear,

(2) The Liapunov exponent for RIFS contracting on average in the most
commonly used sense (see ((1.3)) is not invariant under coordinate change
with a C' map whose derivative is not separated from zero (e.g. on the
half line). On the other hand, the entropy and the dimension are invariant.

The RIFS {F, p} in the literature is most commonly called contracting on
average (see [2]) if all the maps in F are Lipschitzian and for p-almost alli € £

1
x. = lim —log “f,] ,,,,, i, || <0, (1.3)
n—-oon
where we write f;, ; := fi, o---o f; throughout the paper, and | /|| denotes

the Lipschitz constant of a function f. In this case there is a unique invariant prob-
ability measure (see [2]). The authors in [9] proved that the Hausdorff dimension
of the invariant measure is less than or equal to _HX“L for RIFS satisfying ((1.3)),
where H,, is the accumulation entropy of u relative to F (see the definition in
Section 2).

However, x; is not invariant under a coordinate change whose derivative is
not separated from zero, which is a significant drawback. It can happen that the
RIFS (F, p) is contracting on average in the sense (1.3) but after a coordinate
change by a smooth map ¢ whose derivative is not bounded away from zero (if
the domain of F is not compact), the resulting new RIFS G := {gy, ..., gn},
gi(u):=9po fiop '(u),i =1,..., m (with the same probability vector) is not
contracting on average in the sense of (1.3). For example, special attention was
paid in the literature to the RIFS defined on [0, c0)

1

fik)y=r"%, pHEx)=x+1; po=pi=3

See Section 6 for a short account about the importance of this system. This system
clearly satisfies (1.3). However, as is detailed in Section 6, after the coordinate
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change ¢ : [0, co] — [0, 1] defined by

X
= — = 1

o) = 5 T @(00)

we obtain the RIFS G := {g], g,} defined on [0, 1]

u
= — ) = 2 - - O = = 1
qi= i @=C-w! Osus
also with probability (%, % (see Fig. 1), which does not satisfy (1.3). See Section 6

for details.

Our result is also related to the paper!?), where the authors investigated the
Hausdorff dimension of invariant measures for parabolic (so, not contracting)
IFS’s with overlaps. At some places during the proofs we use ideas similar to
those in 19, Myjak and Szarek ® also investigated related problems about the
Hausdorff dimension of invariant measures for non-contractive IFS. Steinsaltz (1)
considered RIFS which are contracting on average in another sense, which is more
general than (1.3).

2. NOTATION AND MAIN RESULT

Let 7 =1[0,b] CRT be an interval with b€ RTU{oo} and F :=
{fi,..., fin} (m = 2) be a system of C?> maps on [0, b] if b < oo and on [0, oo) if
b = oo having the properties

fiil—1, OzmiinFix(f,»), 2.1)

Hllfgg fi(x) >0, (2.2)

Vx < b, fu(x)>x. 2.3)

Every map f; is convex but different from the identity map. 2.4)

The assumption (2.3) simply states that there is a map which is above diagonal on
[0, b) and without loss of generality we may assume that this is f,,. In particular,
fm(0) > 0. We remark that the maps are not assumed to be strictly convex. Even,
if b = co we do not assume that our maps are Lipschitz continuous.

Let u = {p1, p2, .-, pm}N be the product measure on the symbolic space
T ={1,2,...,m}" of the probability (pi, ..., pm) (le. > e pi =1, pi > 0).
For any finite sequence (i1, ..., i,) € {1,...,m}", we write
DPiy,...iv. = PiyPiys - - -5 Piy>» Sivoin = fiy 020 fi.

As we shall see, the Liapunov exponent x is invariant under coordinate
change. Moreover, we shall see that x has another equivalent expression (see
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Lemma 1):
.1 ,
XF = nlggo - log f;, . ;.(0) Has. (2.5)

The Perron—Frobenius operator of (F, p) is defined as follows:
L@) =) pipo i
i=1

where ¢ is continuous function with compact support. The adjoint operator L* of
L acts on Radon measures on /.

Definition 1. 'We say that a probability measure vy is invariant if L*vy = vy.
Let vy be an invariant measure. For every Borel set 4 C [0, b] and for every
n we have

vo(d) = D piviyvo (i (4). (2.6)

.....

On the probability space (X, u), define inductively a stochastic process {X},}.0
with state space / as follows

Xo(d)=x, X,()=fi,(Xu1(1) n >=1).

It is clear that {X,} is a Markov chain with transition probability P(y, B) =
L1g(y), ie.

m
P(y.B)=)Y pils(fi(»). (v €l BeBU)).
i=1
The invariant measures defined above are the invariant measures of the Markov
chain with transition probability P(y, B). For an RIFS which is contracting on
average, the push down measure v is an invariant measure. This is an immediate
consequence of the following Fact.

Fact 1. It follows from (1.1) that T1(i) is finite (even if b = oo) for almost all
ie X

Proof: Let H = {i: (i) = oo}. To get contradiction we assume that u(H) > 0.
Then by ergodicity w(H) = 1. In this case x =) ;_, px logdy, where dj :=
lim f/(x) < oo follows from (1.1). Using Birkhoff Ergodic Theorem we obtain
X—>00

that for p almost all i

1 n
— E logd;, — x < 0. 2.7
n

=1
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Fixa x < x1 < 0. Then for i almost all i there exists N such that foralln > N
we have

vx,o S (x)<expzlogd < e 2.8)
(=1

Using this and the fact that for every ¢ we have

qg—1

|f;1,...$iw+q(0) - ﬁl ..... l'N(O)l =< Z |ﬁl,...,i,\/+k(ﬁm’+1{+1(0)) - ﬁl,...,i‘v+k(0)| .

k=0

From Lagrange’s Theorem we get that for 11 almost all i the sequence { f;,..;,(0)}
is bounded.

Furthermore, if b is a common fixed point of the system F, the Dirac measure
dp is also an invariant measure (it may happen that v = §,) and then we shall
prove that all invariant measures are convex combinations of the push down
measure v and the Dirac measure §;,. However, if 4 is not a common fixed point
of the system, the push down measure will be proved to be the unique invariant
measure. Also we will prove that if the push down measure v is different from &,
then it is non-atomic.

For (i1, ...,i,) € {1, ..., m}", consider the cylinder
[il,...,in] ZI{jEZijZik, k=1,2,...,l’l}.
If fj..., = fi,....i,» we write (ji, ..., ju) ~ (i1, ..., iy). Let D, be the set of

equlvalence classes for this equivalence relation. Following (") we introduce the
n-th accumulation of p (relative to the system F) by

TR (T = S VT (VI A )}
U1seees )~ seeesin)

Then we define the accumulated entropy (relative to the system JF) of u by

1
Hy = lim == > jn([yD log pn([¥D):
[v1eD,

Obviously, H,, < h, where h,, is the usual entropy of 1 (i being considered as a
shift-invariant measure on X). For an i € ¥ we define

E) = €D Groevs )~ (1o evnsin)}

The following lemma was proved in ([9], Lemma 2.2).

Proposition 1.  (Existence of local entropy) For pa.e.i€ X
- log (€, (D)
im —————=

n—o00 n

= —H,. 2.9)
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Our main result is the following

Theorem 1. Let (F,p) be a contracting on average RIFS (satisfying (1.1)).
Suppose the assumptions Eqs. (2.1)—(2.4) hold. Then for every invariant measure
vy we have

H,
dimy(vy) < —£.

3. DIFFERENT FORMS OF THE LIAPUNOV EXPONENT
Proposition 2. (Existence of x ) The limit (2.5) defining x r exists almost surely.

Proof: The existence is ensured by the Kingman Ergodic Theorem (see [6],
p-38). Let F, (i) = log f; ; (0). We have only to show that £, is a superadditive
process since the derivative of f;,7 = 1, ..., m are uniformly bounded away from
zero. That is

Fuqk (i) > F,(i) + Fi(o"i), (Vn, k>1).
Since fi,.ivie = Sirvoin(Sips1roins)» WE CaN Write
Fori(@) =log £ o (firerrinn ) +log f7 - (0).

Notice that f; ., ;.,(0) > 0 and that i/l is increasing. Then the first term
is greater than or equal to F,(i). The second term is exactly Fi(c"i). Thus the
superadditivity is verified. |

It follows from the definition of x (see 1.1) that
Lemma 2 For p-a.e i€ X:

1
X = lim —log £/ _, (TI(c")). 3.1)
" \

n—oop T
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Proof: From the definition of IT we get f;,., ., (II(c"i)) =TI (aki) for 0 <
k < n. By the Birkhoff Ergodic Theorem, we obtain that for u a.e. i:

X = / log £} (T(o1)) djs(i)

R .
= nll)rglo - kzz; log f; (H(O’kl))

.....

So, the last limit exists for p-a.e. i. |

Using that f; ; is a monotone increasing function it follows from Lemma 1 that

Corollary 1. xr <x.

Since it was our principal assumption that x < 0, thus we obtain that
xF <O0. 3.2)

In the dimension theory of contracting conformal IFS the so called “Bounded
distortion lemma” has a very important role. We can hope here only to prove a
weaker result:

Definition 2. 'We say that the weak distortion property holds on a closed interval
interval J C [0, b] if

1 1
lim —logmax f; ; (x)= lim —logmin f;  (x). (3.3)
n—00 1 xeJ Tl " n—00 pn xeJ Tt

In the next two steps we are going to prove that the weak distortion property holds
on every proper closed subinterval of the form J = [0, ] C [0, b]. Fora k € N let

Je =10, funy,...m (0)], (3.4)
where we choose (m, ..., my) such that for all (i, ..., ix) we have
fml ~~~~~ mk(o) = fil,m,ik(o)' (35)

Proposition 3. (Weak distortion) The weak distortion property holds on Jy for
every k € N.
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Proof: Since xr < 0, we can choose 0 < ¢ < —x#. Fix N = N(¢) such that
w(2e) > 1 — ¢ where
Q= {i eX:Vn=N, f .(0)< e”(XF“)}_

Let Q¢ := ¥\ Q.. Define

Ry = {il e{1,...,m}:[il,ml,...,mk]CQg}

and
Ru={G1.....in): Gy i) € RVE< j < mslin, ..o inomy, ... myg]
c Q.
Let
R,,IZ U [il,...,in], WnIZ U [il,...,in,ml,...,mk]
(i1seesin)€R (i1sin)ER
The rest of the proof of the lemma is organized in 5 claims. |

Claim 1. If(iy,...,i¢) € Reand (ji, ..., ) € R, with £ # n, then

i, ooy idd Nty ee ey Jul = 0. (3.6)

In fact, we may assume that £ < n. Since (Ji, ..., j,) € Ry, by definition
Uty -5 Jo) € Re. Thus (iy, ..., 1g) # (J1, - - -, j¢)- This implies the claim imme-
diately.

o0
Claim 2. The set | J W, is equal to the disjoint union

n=1

[e.¢]
U U boeviemomd c Q6

In fact, by the definition of R, we have [iy, ..., i,, my, ..., m;] C Q¢. The
disjointness is ensured by the previous claim.

o0
Claim 3. <U Rn) < —£
=1 Pmy..omy,

Notice that w([iy, ..., i,]) = > 1 w({i, ... iy, my, ..., mg]). Summing
_—

up this equality for all (i1, ...,i,) € R, we get (U, R,) = —— (U, W,,).

Py ooy

Thus Claim 3 follows from Claim 2 and the fact that 1 (22¢) < e.
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o
Claim4. Foralli¢ |J R, andn > N(€) we have

n=I

1
S i ooy (0)) < "0+, (3.7)

.....

Fixn > Nandi ¢ U R,. Since (i, ..., 1) &€ R for all £ < n, there exists

jelit,....ip,my, .. mk] N .. On one hand, by the definition of €2, the fact
on j implies

fj/l ----- Jntlsees jn+k(0) < e(n+k)(XF+£)'
On the other hand, since (j1, oy Judds ooy Jnak) = @1y ooy iy my, ..., my), We
have f/ . L. (O)=f . ivetinee(0). Thus the above inequality is just the
claim.

Claim 5. Foralli¢ |JR, andn > N we have

1
max TN ES /—e(””‘)(””). (3.9)
xeJdi

By the chainrule, f; ; (x)is a product of increasing positive functions. So

© .. (x) itself is an increasing function. By using Claim 4 and the definition of
Ji, we obtain the Claim 5.

Now we can finish the proof of Proposition 3. It follows from Claims 3 and

5 that for  a.e.i € X,
lim sup — logmaxf 5, (X) < X7 3.9
n—oo N xe€J TV
On the other hand, using again the fact that fl’l ;,(X) 1s @ monotone increasing

function we see that

1
lim — log mmf o @)= lim —log f ; (0)= xr.

n—oopn  xeJ, U7 n—oop 7

This, together with (3.9), completes the proof of Proposition 3.

Lemma 2 For any 0 < t < b the weak distortion property (3.10) holds on the
interval [0, t] as well. That is

1
lim — log mm f ;, () = lim —log max f (X)) = xF (3.10)

n—ocopnp  xe€[0,] " m—oop  xe[0,] 7
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Proof: It is a consequence of Proposition 3 and the following fact: J; tends to
[0, b] as k — oo. This is so because f,,(z) > z forz < b and f,,(b) = b. Then the
iterates f,, . »(0) tend to b. ]
Proposition 4. [fthe RIFS is contracting on average and b = oo then the push
down measure v is supported on [0, co]. That is v({oo}) = 0.

Proof: What we have to show is I1(i) < co u-a.e. Consider the interval J :=
[0, u] withu = [max /i(0). Take an ¢ > O such that xr 4+ € < 0. By the definition

of . and by Lemma 2, there exists an N € N and a set Q C X such that u(2) >
l—¢candforallie Q,Vn> N,andVy € J

S () < et (3.11)

.....

have
k-1
Jori @ S LA | firie (0) = fir i, (0)]
(=N
k-1
<L+ u;vr;lgflﬂl ..... )
=1 N(xr+e)
UxF+e) € —
(=N
Therefore, I1(i) < K holds for all i € Q. It follows that I1(i) < co for pu-almost
all i. O

Proposition 5. (Integral representation of x r)

X = XF-
Proof: There are two cases to settle: O

Case 1. forb < oo, v({b}) = 1 holds.
Let ¢ > 0 be arbitrary fixed. Using Corollary 1 it is enough to prove that

XF > X — €. (3.13)

(logfi’)/(x)‘. This is finite since f € C? and f(x)

is separated from zero. Put M := max; |10g fi’(b)|. We write ¢ := minlog f/(0).

We often use in this proof the fact that both f/ , and f; l

Let L := max; max,

i, are monotone

.....
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increasing functions. Using that the system is contracting on average, it follows
from fi’ increasing, i = 1, ..., m that c < 0. Let § > 0 be chosen such that

SA+L+M—-2)<ce

,,,,,

for the set
Qg = U [ilv-"viN]
iy ©)>b=5
we have
)
w(2s) >1-— 7" (3.14)

Since from Birkhoff Ergodic Theorem
1 ‘.
—#{0<l<n:o'ieQs} — u(),
n
by (3.14) we can choose a K such that the measure of the set
1
H(g:{ieZ:Vn>Klwehave—#{0§€<n:creieQ,g} >1—8}
n

is

Ww(Hs) > 1—3. (3.15)
Finally, it follows from Birkhoff Ergodic Theorem that for ; almost alli € X,
) 1 n m
Jim — > log fi(b)=x =Y p;log fi(b). (3.16)
e=1 j=1
Therefore we can choose K, such that the measure of the set
1 n
Zs = {ie Y :Vn > K, —Zlogf,.;(b)—)( <8}
n :
=1
satisfies
w(Zs) > 1-3. (3.17)
We write

K :=max {K;, K,}.
Let R be any natural number satisfying:

N+1
R>K+ N and +

<

’
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and let
ic H; ﬂ Zs.

Now we prove that

%logfi/l L0 > (1 =8 —e, (3.18)

which completes the proof of (3.13) since § can be arbitrarily small. In the following
formula we partition the integers between 1 and R — N — 1 into two sets: The
“good” ones are Gg := {1 <€ < R— N —1:c'i € Qs}. While the “bad” ones
are Wp:={1 <€ <R—N—1:0"¢Qs}. Wehave

R-N-1 R
1 ! 1 , 1 /
RO @ = % D 108 S s O) 35 D2 108 i O)
—_ ¢=R—N
1 R—N-1
> = log f7 (fissn....in(0)) 4 8¢
=1
1 1 /
= = e+ = > (log f;(b) = 8L) + 8¢
LeWyr LeG,
1 R—-N-1
> = log f;(b) — 8M + 28c — 8L
=1

v

(1=8))_ pjlog fi(b) — ) — 6M +26c — 5L
j=I
ZX—¢&
Where we used Lagrange’s theorem for the function x — log f (x) in the fourth
step and we used (3.16) in the fifth step.

Case 2. v({b}) < 1.Then there exist k and {n,}’" such that for all p,
[I(o"r(i)) € Jr. We immediately get the statement of our Lemma from Lemma 2

and Proposition 1, where J; is as it was defined in (3.4).

So we have proved that y = x. Now we prove that our Liapunov exponent is

invariant under coordinate change. Given two sets of maps F = {f, ..., fu},G =
{g1,...,gn} satisfying the conditions (2.1)—(2.4) and a probability vector p =
{p1,..., pm}. We write b and bg for b appearing in the conditions (2.1)—(2.4).

We consider two systems (F, p) and (G, p) and write their Liapunov exponents by
xg and xr.
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Proposition 6. If F is conjugate to G in the sense that there exist some ¢ :
[0, b£] — [0, bg] strictly increasing bijection which is C' on [0, bx] such that

gy =g¢o fiop (u) (3.19)
holds for all u € [0, bg], then xr = xg-.

We remark that for the most commonly used notion of Liapunov exponent
xr of a RIFS satisfying (1.3), the same does not hold as our motivating example
shows. We also remark that F is conjugate to G doesn’t mean that G is conjugate
to F.

Proof: First we observe that for all x € [0, b] we have ¢'(x) # 0 (although
limy_,p, ¢'(x) = 0 is possible). Then

iy = @' fir i (07 O - £ i (071 (0) - (071 (0). (3:20)

However, using the facts ¢ ~'(0) = 0 and f;, ., (0) < I(i) < b, we obtain that

0 < ¢'(0) < ¢'(fir...., (0™ (0)) < ¢'(T1(D)) < 00

since almost surely I1(i) < bx. Thus

1 1
xg = lim ~logg/  (0)= lim ~logf; , (0)= xr.
n—oo n " n—oon "

..........

4. ESSENTIAL UNIQUENESS OF INVARIANT MEASURES

Although in general there are infinitely many invariant measures, we are
going to prove that every invariant measure is a convex combination of the push
down measure v and some atomic measure.

Proposition 7. Let vy be an invariant probability measure such that vy({b}) = 0.
Then vy is a non-atomic measure, that is vo({x}) = 0 for all x.

Proof: We set i(x) := vo({x}) and H := {x : h(x) > 0}. We have only to show
that H = (. Suppose H # . We will deduce a contradiction. Let z = anez};( h(x).
Since ) ., h(x) <1, the set Hy:= {x : h(x) =z} is finite and nonempty. It
follows from (2.6) that for every x € Hy and forall 1 <i <m, ffl(x) exists and
belongs to Hy. Put y := max Hy. In particular, [, '(y) € Hy. However, this is
impossible since £, '(y) > y. O

In the case of contracting IFS we know that the invariant measure must be
unique. For the systems considered in the present paper, it may occur that &, is
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invariant (when b is a common fixed point) and there is still the push down measure
v supported on [0, b), which is invariant. Then there are at least two essentially
different invariant measures ;5 and v (it is possible that v = §;). Therefore the
convex combinations of §, and v are invariant measures. Below we point out that
there are no more invariant measures.

Proposition 8. (Essential uniqueness) Lef vy be an invariant probability mea-
sure such that vo({b}) = 0. Then vy = v. (We remind that v is the push down
measure of 4.)

Proof: First, we are going to prove

vo([0, 1)) < v([0, 1)), 0 <t <b). 4.1)

Fixa0 <t <b. Let 4, := {i €eX: fi,.i,0) > t}. Then {A4,} is an increasing
sequence so,

Tim (dy) = (| 4n) = v(c2. 6. 4.2)
Using that f* , (1,0] = [0, b] forani € 4,, we get
vo((2, b]) = E:J% ..... RO/ R (N)) (4.3)
= > pin w0 B]) = (4.
(i1,sin)Ed, ‘——r——‘
So,
vo((t, b]) = v((z, b]). (4.4)
From this and Proposition 7 we get
vo([0, 1)) < v([0, 1)). 4.5)

We can apply Proposition 7 for the measure v too. Namely, it follows from (4.4)
that 1 = vy (U; 5[0, £]) < v (U, 5[0, £]) = v ([0, b)). So we get

v({b) =0 (4.6)

which results that we can apply Proposition 7.
Finally we show the reverse inequality

([0, 1)) < vo([0, 7)), (0 <t < b). (4.7)

Let § > 0 be arbitrary positive number. Take a & € (O b) such that vy([&, b]) <
8. Notice that if f;, ;(§) <¢, then we have f ;, ([£,b]) C [§, D] by the

,,,,,,,,,,
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monotonicity, thus vy( flrl - ([t, b])) < 8. So

AAAAA iy

,,,,,

Iyeuny in

- X+ ¥

Sitewin@E)>t fiy i G)=t

Siprein €)>1
=pli| fir.i, () > 1} +6 (4.8)

holds for all #. On the other hand, v is also an invariant measure. So, we can apply
(2.6) for v to get

v([0. )= D piiv (S [0.0). (4.9)
Using that f;,.;,(0) > ¢ implies f;' . ([0, 1)) = ¥ we obtain
v([0, )< Y pi, =il Sy, (0) < ). (4.10)

Sit i (0)<t

also holds for all n. If we knew that for any ¢ > 0 there exists n such that
plil] fi...i,(0) < rand f;,_;,(§) > 1} <¢, (4.11)
then choosing this » in the inequalities (4.8) and (4.10) we would conclude that
v([0, 1)) + vo([t, b]) < 1+ e+ 6.
Here we have used the identity u(E) + w(F) = w(E U F) + n(E N F). So,
v([0, 1)) < 1 — ([, b)) + & + 8 = vo([0, 1)) + & + 6,

which would complete the proof of (4.7) since &, § > 0 were arbitrary.

To complete the proof we have only to show that for any ¢ > 0 there exists n
such that (4.11) holds.

Since the push down measure v is non-atomic, we can find n > 0 such that
w(Ho) < £ where Ho := {i | T1(i) € ( — n,t + n)}. Since I1(i) = lim, f;, .;,(0)
for all i and I1(i) = lim, f;, . ;,(§) for p-almost all i. By the Egorov theorem we

can find an integer N and a small set H; C ¥ with u(H;) < £ such that

forn > Nandi & H,.Soi ¢ Hy U H, then forany n > max{N;, N,} (4.11) holds.
On the other hand u(Hy U H;) < 2¢/5. This completes our proof. O
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5. PROOF OF THEOREM 1
As we already discussed, without loss of generality we may assume that
vo=v, v(0,>b)=1.

Choose a & € N such that v(J;) > 0, where J; was defined as in Proposition 3.
Since v((0, b)) > 0 such a k exists. We denote by G the (good) set of thosei € X
for which the following three conditions are satisfied:

1 1 &
lim — log sup fl/l LX) = X, lim og (&,(1)) _
n—oon xed " n—o00 n

—H,, (5.1)

furthermore, there exists an infinite sequence {n p};o:1 of distinct natural numbers
such that [1(o"7i) € J;. Then

w(G)=1.

For the rest of the proof we fix an arbitrary ¢ < — x. It follows from the definition
of G (see (5.1)) that for every i € G we can choose N = N(i, ¢) such that for
every n > N the following hold:

1 /
. logsup f; ; (x)— xF| <&, (5.2)

.....
xeJr

log p(&a(i))
n

< e. (5.3)

- (_I—Iu)

Lemma 3. Leti e G and ¢ > 0 be arbitrary fixed. We choose N as above. Put
P = 2|Ji| - %718 Then for every n > N we have

Sitvewia, (J0) C [T =7, TIE) + 70, ] (5:4)

Proof: Choose p € Nsuchthatn, > N andletx € J;. Using that I1(o"#i) € Ji
by definition, we obtain that

< |lmax £ . (y) < |Ji| exFTo), (5.5)
yedy 1 np

O

Now we can prove our Theorem.
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Proof of Theorem 1: We use the well known theorem that for a probability
Radon measure m on R? we have

logm(B(x, 7))

dimy(m) = ess sup, li?Liélf logr , (5.6)
where B(x, r) is the ball centered at x with radius  (see [3]). Let us write
I(i,n):=[T1H) — ry, TI(H) + 7] .
By Lemma 3., with n = n, we have
V(I () = o (I (i m) = p o T (S i, ().
Observe that
0 (frn D> U G T
Gtsees )~ ensin)
where (ji, ..., ju, TT7' (Jy)) is the subset in ¥ defined by
{teE:rkzjkforl <k<n and H(o”(r))eJk}.
We obtain from (5.4) that
v(I@Gm)= Y i, (T D). (5.7)
[iserjnle€n(d)
Because k was chosen in such a way that «(IT~! (J;)) > 0, we get
lim Inf lffgve({ilff? = Xf1+ ¢ A, % log D> Pi = %
Utsesjnl€€n(i)
Then we get the desired conclusion by using (5.6). O

6. THE ORIGIN OF OUR MOTIVATING EXAMPLE

In the study of Oppenheim expansion of Laurent series over a finite field,
we meet the following random series [4]. Let A > 2 be an integer and ¢ > 2 be
another integer. Let v be the distribution measure of the following random series

i €)" 6.1)
n=0

where {€,} is an i.i.d. sequence of N-valued random variables whose common law
is geometric, i.e.

qg—1

kaZP(t?l:k)Z r
q

k=1,2,...).
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The measure v can be viewed as the invariant measure of the infinite IFS defined
by fi(x) = x%" (k=1,2,...)and with probability (p;, p», ...). By considering
the Fourier transform of the measure v, we see that v is singular with respect to
the Lebesgue measure. In fact,

~ o q—1
o) =" 1>1‘[ o (62)

It turns out that [V(27 A")| = [V(27)| > 0 ([4]). A natural question arises: what is
the Hausdorff dimension of v?
Let us consider the following IFS:

folx) = ; fi)=x+1

with probability py = (¢ — 1)/q and p; = 1/q. Let o be the invariant measure of
this IFS. Its Fourier transform satisfies

3(1):‘161;16(,\ £+ ~ e”a(t)

So,
-1
a(t) = qq_ —o(A"'1).
Repeated application of this yields:
g1 qg—1 q—1 ~y —(n+1)
B0 = g L g 00T (63)

Using (6. 2) we obtain that D(¢) = /'/*~V&(¢). This implies that y is a translation
of o by /\ . Therefore both measures v and o have the same dimension. The
question of dlmensmn for u is the same for o which is an invariant measure of a
finite system.

Since both f; and f] are linear, we have

/
Jivoiy = Mgy oo A,

where Ay = % and Ay = 1. It follows that

-1
sz—q log A.

Thus we get

Theorem 2. We have

-1 1
dimg v = dimgo < 9 <q log 1 + —log q) . (6.4)
(g —Dlogh \ ¢ g—1 ¢
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The upper bounded is effective if it is smaller than 1. This is the case if
A > ‘lel Notice that the preceding arguments hold even for real numbers A > 1
and ¢ > 1. In ([9], Example 3.2) the authors discussed the special case of py =
p1 = % It has been proved in ([9], Theorem 2.2) that for A > 4 the dimension of
the measure v:

2log?2
di <
imp(v) = log A

<1 (6.5)

Let us make the following coordinate change ¢[0, o0) — [0, 1):

o(x) = L, where @(0c0) := 1.
X

+1
We define
(po fiop™Hw), if0<u<l,

8= { 1 ifu =1,

Then
Qi) = s @)=

and

, A , 1

go(u) = Gr A= 0)P g () = C—up

The appropriate measure on [0, 1]:
n=vog '=pollg,
where G = {g, g1} and

Therefore we know that
dimy n = dimy v < —£.
—X
However, one can easily see that the logarithmic growth rate of the Lipschitz
constant is:

1 1
- log | gi,...i, | — 3 logh >0

thus ([9], Theorem 2.2) does not apply to the system {gy, g1}
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Fig. 2. Repelling common fixed point at x = 1.

7. APPLICATION: ANOTHER EXAMPLE

Let f1, f2 : [0, 1] — [0, 1] (see Fig. 7) be defined by
1

fl(x>=ﬁxx+1—%,

Bx  ifx €0, 1]
frlx) = h(x) ifxel[3.2-8)""]
2x —lifx e (- B)"", 1]

where 8 < 1 is small and /(x) is defined to make f; a strictly increasing, convex
C? map.

Proposition 9. Consider the IFS defined above F = { f1, f2} with the probability
11

p=1(35,3) Let p= @ =0, 618... be the golden mean. For the push down
measure v we have

log4
log /2 — plog  — (1 = p)log2-

This estimate is effective, i.e. dimy v < 1 whenever 0 < § < 0, 121135 .. ..

dimy v <

As Fig. 2 shows, this IFS clearly satisfies all of our assumptions made in
Section 2. Our aim is to estimate x » from above by using the integral representation
of . In order to do so, we are led to give a lower bound on v([0, %]) since f,
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Fig. 3. Maps g1, 2.

is strongly contracting on this interval. In fact, we will prove that v([0, %]) >0 >
0.618. Then choosing 8 > 0 small enough we can prove that dimyv < 1.

To estimate v([0, %]), we introduce the following new IFS. Let G := {g;, 2>}
with probability vector p = (3, 3), where g1, g : [, 1] — [3, 1] are respectively
defined as follows

1 1
X)=—4=xx+1-—
g1(x) 7 7
1 if 1 3

o) =12 if x €[3.3]

2x—1if x € (3,1)

The reason for introducing the new system is as follows (see the next two lemmas).
Put

X2:=0 and x;:= ff%0) for k=-1,0,1,2,...
It is nothing but the orbit of 0 under f;, ordered by {—2, —1,0, 1,2, ...} so that
{xu}no 1s the orbit of % under g (notice that xo = %). Notice that g = f; |[%,1] and
& = fali -
Lemmad4. Foranyn > landiy,...,i, wehave

8i.nin(X0) € {Xa}i2o-

Proof: We prove the lemma by induction on . The case n = 1 is true because
g1(x9) = x; and g (xg) = % = xo. Assume that the inclusion is true for n. Let
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Giynin(X0) =X = g’l‘(xo) for some k£ > 0. Since g;(x;) = x¢+1, we have only to
check the three facts:

2(x0) = x0, g(x1) =x0, g0x)=xx—p for k=>2.

The first fact is seen. The second one is because of x; = 1 — % < %. Notice that

Xy = % and that x; is increasing. So the third fact is equivalent to 2g/1‘(x0) —-1=

g’ffz(xo) which is easy to check. O
LemmaS5S. Foreveryn > 1andiy,...,i, we have the equivalence
1
&, (X0) = X0 O X1 = fiy,..5,(0) < 3 (7.1)

The proof of this lemma is left to the reader. It follows from the geometry of the
graph of these two functions.

Now we are led to consider the random walk X1 = g;,,, (X}) starting from
xo with states {x;}¢>0. Or equivalently we can consider a random walk on the non
negative integers starting from 0. The random walker stays at 0 or moves to his
neighbor 1 with equal probability % When the random walker is at 1 he jumps to
his neighbors 0 or 2 also with equal probability % Ifthe walker is atany » > 1 then
he jumps to n — 2 or to n + 1 with equal probability % The probability transition
matrix is given below:

14000000
10400000
10010000
P=1lo 1 o0 1000
00410013100
0001100110

The reason that we are interested in this random walk is as follows. Let q,({") =

P(X, = k) be the probability that the random walker is at k after n steps. By the
construction of the random walk we have (see [5], p. 393)

"= > P, (7.2)

We compute the stationary measure q = (gx )r>o for this random walk, where
qr = lim, q,({") . It is the probability vector such that P = q. In other words, the
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solution of the following system:
Yisodk =1, q=0(k>0)
ar = 3 (qr-1 + qis2)
g0 =3 (q0 +q1 +q2)

The solution is g (k) = p**2 for k > 0. So,

q(0)+q(1)=p > 0.618 (7.3)
Also we know by ([5], p. 393) and by (7.2) that
= lim o™ = | o
gk = lim ¢;" = lim " pi,- (7.4)
iy i (5)=%k

Now we are ready to estimate x. Fixan 1 < i < m and write ¢(x) = log f/(x).
Notice that ¢ is bounded and I1(i) = lim, f;, . ; (0). We have

.....

St oin (<3 Sitowin =3

=0 g i (3)=x

and then the second limit is equal to 1 — p.
Here we used (7.4) and (7.3). Thus we get

! 1
[ e < 0 (3 ) + 0= oo

Notice that f](1/2) = f/(1) = 1/4/2, f>(1/2) = B and f;(1) = 2. We can obtain

. , p B 1—p 2
gpiflogﬁ(x)dv(x) < > log (ﬁ) + > log (ﬁ)

= %(,o log B 4 (1 — p)log2 — log v/2).
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So by Theorem 1 we get

2log2
log+/2 — plog B — (1 — p)log2’

dimgv <

This completes the proof of Proposition 9.
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